A PCA/ICA based Fetal ECG Extraction from Mother Abdominal Recordings by Means of a Novel Data-driven Approach to Fetal ECG Quality Assessment

نویسندگان

  • A. Karimi Rahmati
  • S.K. Setarehdan
  • B.N. Araabi
چکیده

BACKGROUND Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant. OBJECTIVE MATERIALS AND METHODS Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a better and more qualified extracted fetal ECG by using a novel approach. RESULTS In this paper, a PCA/ICA-based algorithm is proposed for extracting fetal ECG, and fetal R-peaks are detected as well. The method validates the quality of extracted ECGs and selects the best candidate fetal ECG to provide the required morphological ECG features such as fetal heart rate and RR interval for more clinical examinations. The method was evaluated using the dataset which was provided by PhysioNet/Computing in Cardiology Challenge 2013. The dataset consists of 75 recordings of 4-channel ECGs each containing 1-minute length for training and 100 similar recordings for testing. CONCLUSION When the proposed algorithm was applied to the test set, the scores of 85.853 bpm2 for fetal heart rate and an error of 9.725 ms RMS for fetal RR-interval estimation were obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PCA/ICA based Fetal ECG Extraction from Mother Abdominal Recordings by Means of a Novel Data-driven Approach to Fetal ECG Quality Assessment

Background: Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant.Objective: Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a be...

متن کامل

INTELLIGENT TECHNIQUE OF CANCELING MATERNAL ECG IN FECG EXTRACTION

In this paper, we propose a technique of artificial intelligence called adaptive neuro fuzzy inference system (ANFIS) for canceling maternal electrocardiogram (MECG) in fetal electrocardiogram extraction (FECG).This technique is used to estimate the MECG present in the abdominal signal of a pregnant woman. The FECG is then extracted by subtracting the estimated MECG from the abdominal signal. P...

متن کامل

Fetal electrocardiogram extraction based on non-stationary ICA and wavelet denoising

Fetal electrocardiogram (fECG) monitoring is a technique for obtaining important information about the condition of the fetus during pregnancy and labour by measuring electrical signals generated by the fetal heart as measured from multi-channel potential recordings on the mother body surface. It is shown in this paper that the fetal ECG can be reconstructed by means of higher order statistical...

متن کامل

Performance evaluation of nonparametric ICA algorithm for fetal ECG extraction

Fetal electrocardiograms (FECG) contain important indications about the health and condition of the fetus. In this respect, it is crucial to apply a robust algorithm to ECG data for extraction of the FECG signal. Most of the independent component analysis (ICA) algorithms used for this purpose rely on simple statistical models. Such algorithms can fail to separate desired signals when the assum...

متن کامل

FCOMBI Algorithm for Fetal ECG Extraction

Fetal ECG extraction has an important role in the medical diagnosis during pregnancy. This problem can be modeled from the approach of blind source extraction. The mathematical modeling of fetal ECG extraction using ICA algorithm is described in this paper. It also proposes an efficient BSS method (FCOMBI) for the extraction of fetal ECG. This algorithm combines the strengths of non-Gaussianity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017